| | A | В | С | D | Е | F | G | |----|---|-------------------------------|----------------|-------------|----------|--------------------------|----------------------------------| | 1 | | 003 | T/ | ABLE 1 - 12 | 2/23/11 | v v | No. | | 2 | | | FIELD AND | | | | | | 3 | | | DIMOCK RESID | | | | a | | 4 | 1 | | DIMOCK, SUSQUE | HANNA C | DUNTY, P | ENNSYLVA | NIA | | 5 | Parameter/Method | Matrix | Field Samples | Bkgd | | QC | Sample Sum | | 6 | | | | | Dup | Trip ¹ Blanks | Rinsate ¹¹²
Blanks | | 7 | 87Sr/86Sr analysis | drinking
water | 60 | 0 | 6 | 0 | 0 | | | Alkalinity (SM 2320B) (Total Hardness, HCO3,
CO3) (2320B, 2340B) | drinking
water | 60 | 0 | 6 | 0 | 0 | | | Alcohols: Ethanol, methanol, 1-propanol, 1-
butanol, 2-butanol (8015D) | drinking
water | 60 | 0 | 6 | 0 | 0 | | | Anions, Chloride, Bromide, Fluoride,
Nitrate/Nitrite as N, Orthophosphorus as P,
Sulfate as SO4 (300.0) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 11 | Bacteria (total coliform, HPC) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 12 | C14 isotope (biogenic vs. thermo) (isotech) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 13 | d ¹³ C and d ² H of methane (isotech) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 14 | d ¹³ C of inorganic carbon (isotech) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 15 | Dissolved Gases, Methane, Ethane, & Ethene
(RSK-175) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 16 | Ethylene Glycol (8015M) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 17 | Gamma Spec (K-40, Ra-226, Ra-228, Th-232, Th-
234, U-234, U-235, U-238) (901.1) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 18 | Glycols incl. 2-Butoxyethanol (8316) | drinking
water | 60 | 0 | 6 | 0 | 0 | | | Gross Alpha/Beta (900.0) | drinking
water | 60 | 0 | 6 | 0 | 0 | | | Metals: Al, Ca, Cr, Cu, Fe, Mg, Mn, Ni, Na, As, Se
Zn, Ti, Sr, Ba, Sn, Sb, Be, Cd, Co, Tl, U, V,K, Hg
(200.8/245.1) | drinking
water | 60 | 0 | 6 | 0 | 0 | | | Metals: Al, Ca, Cr, Cu, Fe, Mg, Mn, Ni, Na, As, Se
Zn, Ti, Sr, Ba, Sn, Sb, Be, Cd, Co, Tl, U, V,K, Hg
(200.8/245.1) | Filtered
drinking
water | 60 | 0 | 6 | 0 | 0 | | | Α | В | С | D | Е | F | G | |---------------|--|-------------------|---------------------------|---------|---|--------------|---| | | Methylene Blue Active Substances (MBAS) (SM 5540C) | drinking
water | 60 | 0 | 6 | 0 | 0 | | | Nitrate/Nitrite (353.2) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 24 | Oil & Grease (HEM) (1664A) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 25 | рН (9040С) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 26 | Phosphorus, Total (365.1) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 27 | Ra-226 (903.1) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 28 | Ra-228 (904.0) | drinking
water | 60 | 0 | 6 | 0 | 0 | | | Semi-Volatiles (TCL plus TICs) (CLP Trace plus
TICS) (OLC03.2) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 30 | Solids, Total Dissolved (TDS) (2540C) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 31 | Solids, Total Suspended (TSS) (2540D) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 32 | Stable isotopes of water (O,H) (isotech) | drinking
water | 60 | 0 | 6 | 0 | 0 | | 33 | Turbidity, Nephelometric (180.1) | drinking
water | 60 | 0 | 6 | 0 | 0 | | | Volatiles Incl. Acrylonitrile (TCL plus TICs) (CLP
Trace - 0.5 ug/L QL) (OLC03.2) | drinking
water | 60 | 0 | 6 | 1 per cooler | 0 | | 35 | Notes: | | | | | | | | 36 | 1. This QA sample will be an aqueous matrix. | | | | | | | | 37 | sampling equipment is used. | | | | | | | | $\overline{}$ | 3. Estimate based on 5 sampling days | | | | | | | | 39 | Key: | | | | | | | | 40 | Bkgd = Background | QA/QC = Qu | ality assurance/quality o | control | | | | | 41 | MS/MSD = Matrix Spike/Matrix Spike Duplicate | te Sr = Strontium | | | | | | | 42 | CRQL = Contract-Required Quantitation limit. | | | | | | | | 43 | Dup = Duplicate | | | | | | | | 44 | | | | | | | | | 45 | | | | | | | | | | | | | | | | | | | Н | I | J | К | L | М | N | |----|---------------|--------|--|------|---|----------|------| | 1 | 10000 | 5 | 224 | 0000 | | 75 (554) | 0.89 | | 2 | | | | | | | | | 3 | | | | | | | | | 4 | | | | | | | | | 5 | mary | | Total Field and QA/QC
Analyses (not including
MS/MSD) ³ | | | | | | 6 | Field¹ Blanks | MS/MSD | | | | | | | 7 | 5 | 0 | 7 | 1 | | | | | 8 | 5 | 0 | 7 | 1 | | | | | 9 | 5 | 3 | 7 | 1 | | | | | 10 | 5 | 0 | 7 | 1 | | | | | 11 | 5 | 0 | 7 | 1 | | | | | 12 | 5 | 0 | 7 | 1 | | | | | 13 | 5 | 0 | 7 | 1 | | | | | 14 | 5 | 0 | 7 | 1 | | | | | 15 | 5 | 0 | 7 | 1 | | | | | 16 | 5 | 0 | 7 | 1 | | | | | 17 | 5 | 0 | 7 | 1 | | | | | 18 | 5 | 0 | 71 | | | | | | 19 | 5 | 0 | 71 | | | | | | 20 | 5 | 6 | 7 | 1 | | | | | 21 | 5 | 6 | 7 | 1 | | | | | | Н | I | J | K | L | М | N | |----------|---|-----|-----------|------------|---|---|---| | | | | | | | | | | 22 | 5 | 0 | 71 | | | | | | | 5 | 0 | 71 | | | | | | 23 | 5 | U | , | 1 | | | | | | 5 | 0 | 7 | 1 | | | | | 24 | 3 | | , | | | | | | | 5 | 0 | 7 | 1 | | | | | 25 | | | | | | | | | | 5 | 0 | 7 | 1 | | | | | 26 | | | | | | | | | | 5 | 0 | 7 | 1 | | | | | 27 | | | | | | | | | 28 | 5 | 0 | 7 | 1 | | | | | 28 | | | | | | | | | 29 | 5 | 3 | 7 | 1 | | | | | 23 | | | | | | | | | 30 | 5 | 0 | 7 | 1 | | | | | | | | | | | | | | 31 | 5 | 0 | 7 | 1 | | | | | | _ | | 71 | | | | | | 32 | 5 | 0 | / | 1 | | | | | | 5 | 0 | 7 | 1 | | | | | 33 | 3 | U U | | _ | | | | | | 5 | 3 | 71 + Trip | Blanks for | | | | | 34 | 3 | 3 | Coo | lers | | | | | 35 | | | | | | | | | 36 | | | | | | | | | 37 | | | | | | | | | 38
39 | | | | | | | | | 39 | | | | | | | | | 40 | | | | | | | | | 40 | | | | | | | | | 14 | | | | | | | | | 41
42 | | | | | | | | | | | | | | | | | | 43 | | | | | | | | | 44 | | | | | | | | | 45 | | | | | | | | | 46 | | | | | | | | | | 0 | |-------------|---| | 1 | 0 | | 2 | | | 2
3
4 | | | 4 | | | | | | 5 | | | 6 | | | 7 | | | 8 | | | 9 | | | 10 | | | 11 | | | 12 | | | 13 | | | 14 | | | 15 | | | 16 | | | 17 | | | 18 | | | 19 | | | 20 | | | 21 | | | | 0 | |----|---| | 22 | | | 23 | | | 24 | | | 25 | | | 26 | | | 27 | | | 28 | | | 29 | | | 30 | | | 31 | | | 32 | | | 33 | | | 34 | | | 35 | | | 36 | | | 37 | | | 38 | | | 39 | | | 40 | | | 41 | | | 42 | | | 43 | | | 44 | | | 45 | | | 46 | | | | А | В | С | D | E | F | G | Н | | | |----|------------------------------------|---|---|----------------|---|--------------------------|-----------|-------------|-----|------| | 1 | | | <u> </u> | | TABLE 2 - : | | | - | | | | 3 | | | | | | QUIREMENT
GROUNDW | | RY | | | | 4 | | | | | | COUNTY, PI | | NIA | | | | 5 | المناسية المناسية | | | | | | | | | | | 6 | Analytical p | parameter and Method | IVIa | trix | Sample Pr | eservation | Holali | ng Time | | | | | | | | | | | | | | | | 7 | 879 | Sr/86Sr Analysis | drinkin | g water | HNO ₃ , pH | ≤ 2, Ice 4°C | 6 m | onths | | | | 8 | | ethanol, 1-propanol, 1-butanol, 2-
utanol (8015D) | drinkin | g water | lce, | 6°C | 7 (| days | | | | 9 | Alkalin | iity (2320B, 2340B) | drinkin | g water | lce, | 6°C | 14 | days | | | | | | | | | | | | | | | | 10 | | nide, Fluoride, Nitrate/Nitrate as N,
s as P, Sulfate as SO4 (300.0) | drinkin | g water | lce. | 6°C | 28 | days | | | | | | | | 8 | | | | | | | | 11 | Bacteria | (total coliform, HPC) | drinkin | g water | 12 20 | 8% Na2S2O3 | 6 hours | | | | | | Bacteria (total coliform, HPC) | | | drinking water | | if residual CI- present) | | ours | | | | 12 | C14 isotope (bio | drinking water | | Ice, 4°C | | 6 months | | | | | | | | | | | Ice, 4°C, biocide pill in | | | | | | | 13 | d13C and d2 | 2H of methane (Isotech) | drinking water | | sample container | | 6 months | | | | | 14 | d13C of inorganic carbon (Isotech) | | drinking water | | Ice, 4°C | | 6 months | | | | | 15 | Dissolved Gases, Metl | hane, Ethane, & Ethene (RSK-175) | drinkin | g water | pH<2 with HCl and cool
with ice, 4°C | | 7 days | | | | | 16 | Ethyle | ne Glycol (8015M) | drinkin | g water | lce, | 4°C | 7 (| days | | | | 17 | | a-226, Ra-228, Th-232, Th-234, U-
, U-238) (901.1) | drinkin | g water | | NO3 and cool
ce, 4°C | 6 m | onths | | | | 18 | Glycols incl. | 2-Butoxyethanol (8316) | drinkin | g water | lce, | 6°C | 7 (| days | | | | 19 | Gross / | Alpha/Beta (900.0) | drinkin | g water | 1.00 | NO3 and cool
ce, 4°C | 6 m | onths | | | | 20 | | , Fe, Mg, Mn, Ni, Na, As, Se, Zn, Ti,
I, Co, Tl, U, V, K, Hg (200.8/245.1) | | | CONTRACTOR OF THE PARTY | 6 m | onths | | | | | 21 | Methylene Blue Activ | ve Substances (MBAS) (SM 5540C) | | | | 48 | nours | | | | | 22 | Nitrate/Ni | trite (Total N) ((353.2) | pH<2, H2SO4, and co
drinking water with ice, 4°C | | | drinking wa | | | 7 (| days | | 23 | Oil & Gr | ease (HEM) (1664A) | drinkin | g water | 558 | D4, and cool
ce, 4°C | 28 | days | | | | 24 | | pH (9040C) | drinkin | g water | lce, | 6°C | As soon a | as possible | | | | Α | В | С | D | Е | F | G | Н | | |--|---|--|--|--|--|--|--|--| | Phosphorus, Total (365.1) | | drinkin | drinking water | | lce, 6°C | | 28 days | | | Ra | a-226 (903.1) | drinkin | g water | The state of s | TELEVISION THE ENGINEER CONTROL | 6 mc | onths | | | Ra | a-228 (904.0) | drinkin | g water | *6 | | 6 mc | onths | | | Semi-Volatiles | (TCL plus TICs) (OLC03.2) | drinkin | g water | Ice, 6°C | | 7 d | ays | | | Solids, Total Di | issolved (TDS) (SM 2540C) | drinkin | g water | lce, | 6°C | 7 d | ays | | | Solids, Total Suspended (TSS) (SM 2540D) | | drinkin | g water | lce, | 6°C | 7 days | | | | Stable isotopes of water (O,H) (Isotech) | | drinking water | | lce, 4°C | | 6 months | | | | Turbidity. Nephelometric (180.1) | | drinkin | drinking water Ice, 4°C | | 4°C | 48 hours | | | | | | drinking water | | 2 drops of 1:1 HCl, pH<2,
Ice, 6°C | | 7 days | | | | lote: Analyses wil | l be combined into sample k | ottles as ap | plicable/a | ppropriate | based on d | eterminatio | on by lab(s) | | | (EY: | | | | | | | | | | Celsius | | milliliter | | | | | | | | | | = Sodium | | | | | | | | CLP = Contract Lab | | | | | | | | | | DE ENGLISH MOST AND CONTRACTOR OF STREET | | | | | | | | | | | | 15,100.71 | | | | | | | | 53 5.60(485.5) | | | | | | | | | | * | | 100 | | | | | | | | | | microgra | | | | | | | | | Semi-Volatiles Solids, Total Di Solids, Total Su Stable isotope Turbidity, I Volatiles (TCL plus (OLC03.: Iote: Analyses will EY: Elsius 14 = Carbon 14 | Ra-226 (903.1) Ra-228 (904.0) Semi-Volatiles (TCL plus TICs) (OLC03.2) Solids, Total Dissolved (TDS) (SM 2540C) Solids, Total Suspended (TSS) (SM 2540D) Stable isotopes of water (O,H) (Isotech) Turbidity, Nephelometric (180.1) Volatiles (TCL plus TICs) (CLP Trace - 0.5 ug/L QL) (OLC03.2) incl. Acrylonitrile Iote: Analyses will be combined into sample to the th | Ra-226 (903.1) drinking Ra-228 (904.0) drinking Semi-Volatiles (TCL plus TICs) (OLC03.2) drinking Solids, Total Dissolved (TDS) (SM 2540C) drinking Solids, Total Suspended (TSS) (SM 2540D) drinking Stable isotopes of water (O,H) (Isotech) drinking Turbidity, Nephelometric (180.1) drinking Volatiles (TCL plus TICs) (CLP Trace - 0.5 ug/L QL) (OLC03.2) incl. Acrylonitrile drinking Idote: Analyses will be combined into sample bottles as agree; Telsius milliliter 14 = Carbon 14 = Sodium 14 = Carbon 14 = Sodium 14 = Carbon 14 = Sodium 15 = Contract Lab potential 16 = Celta of QL = Sr = Celta of | Ra-226 (903.1) drinking water Ra-228 (904.0) drinking water Semi-Volatiles (TCL plus TICs) (OLC03.2) drinking water Solids, Total Dissolved (TDS) (SM 2540C) drinking water Solids, Total Suspended (TSS) (SM 2540D) drinking water Stable isotopes of water (O,H) (Isotech) drinking water Turbidity, Nephelometric (180.1) drinking water Volatiles (TCL plus TICs) (CLP Trace - 0.5 ug/L QL) (OLC03.2) incl. Acrylonitrile drinking water Iote: Analyses will be combined into sample bottles as applicable/a EY: elsius milliliter 14 = Carbon 14 = Sodium 1P = Contract Lab potential 13C = delta of delt | Ra-226 (903.1) Ra-228 (904.0) Ra-28 (14 H) Ra-228 Ra-28 | Ra-226 (903.1) Ra-226 (903.1) Ra-228 (904.0) | Ra-226 (903.1) Ra-226 (903.1) Ra-228 (904.0) | | | | l J | К | L | М | |--------|--|------------------------------|-----------|---| | 1 | | | | | | 2 | | | | | | 3
4 | | | | | | 5 | | Procurement | Number | | | 6 | Sample Cont | Procurement
Source or Lab | | | | | | | | | | 7 | one 1-L pol | y/TBD | Tier 4 | 1 | | | Three 40-ml glass vials (Fill t | o capacity with no head | | | | 8 | space |) | Ft. Meade | 3 | | | | | | | | 9 | One 500-m | Ft. Meade | 1 | | | | | | | | | 10 | One 500-m | I HDPE | Ft. Meade | 1 | | | | | | | | 11 | 125 ml Pre-sterilize | d polyproylene | Tier 4 | 1 | | | | | | | | 12 | one 1-L pol | y/TBD | Tier 4 | 1 | | | | | | | | 13 | one 1-L pol | y/TBD | Tier 4 | 1 | | 14 | one 1-L pol | y/TBD | Tier 4 | 1 | | 15 | One 40-ml g | lass vial | Tier 4 | 1 | | 16 | Three 40-ml glass vials (Fill t
space | 100 | Tier 4 | 3 | | 17 | One 1-Liter | · HDPE | Tier 4 | 1 | | 18 | Three 40-ml glass vials (Fill t
space | 121 2 | Ft. Meade | 3 | | 19 | One 1-Liter | · HDPE | Tier 4 | 1 | | | | | | | | 20 | One 1-Liter | HDPE | Ft. Meade | 1 | | 21 | One 500-m | I HDPE | Tier 4 | 1 | | | | | | | | 22 | Two 1-Liter amber glass jar | s with teflon-lined lids | Ft. Meade | 2 | | 23 | One 1-Liter amber glass jar | s with teflon-lined lids | Tier 4 | 1 | | 24 | One 250-m | I HDPE | Ft. Meade | 1 | | | 1 | J | K | L | М | |----|------------------|--------------------|---------------------------|-----------|----| | | | | | | | | 25 | | One 400-m | I HDPE | Ft. Meade | 1 | | | | | | | | | 26 | | One 1-Liter | Tier 4 | 1 | | | | | | | | | | 27 | | One 1-Liter | HDPE | Tier 4 | 1 | | 28 | Two 1-Lite | er amber glass jar | s with teflon-lined lids | Ft. Meade | 2 | | | | | | | | | 29 | | One 500-m | HDPE | Ft. Meade | 1 | | 30 | | One 500-m | Ft. Meade | 1 | | | | | | | | | | 31 | one 1-L poly/TBD | | | Tier 4 | 1 | | | | | | | | | 32 | | One 250-m | I HDPE | Tier 4 | 1 | | | | | | | | | 33 | Six 40-ml glas | ss vials w/Teflon | lined cap (no head space) | Ft. Meade | 6 | | 34 | • | | | | 40 | | 35 | | | | | | | 36 | | | | | | | 37 | | | | | | | 38 | | | | | | | 39 | | | | | | | 40 | | | | | | | 41 | | | | | | | 42 | | | | | | | 43 | | | | | |